

SMALL SIGNAL NPN RF TRANSISTOR

Туре	Marking
BFR92	P1
BFR92A	P2

- SILICON EPITAXIAL PLANAR NPN TRANSISTORS
- MINIATURE PLASTIC PACKAGE FOR APPLICATION IN SURFACE MOUNTING CIRCUITS
- GOLD METALLIZED TRANSISTOR FOR HIGH GAIN AND LOW NOISE, PARTICULARLY FOR UHF APPLICATION UP TO 1GHz

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage (I _E = 0)	20	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	15	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	2	V
Ic	Collector Current	25	mA
Ісм	Collector Peak Current	35	mA
I _B	Base Current	4	Α
P _{tot}	Total Dissipation at T _c = 25 °C	200	mW
T _{stg}	Storage Temperature -65 to 150		°C
Tj	Max. Operating Junction Temperature	ure 150	

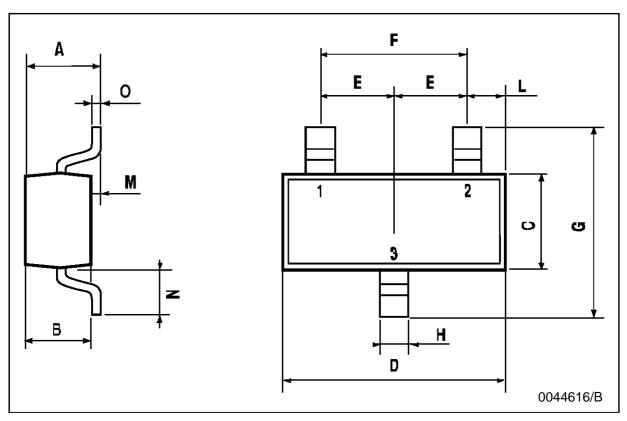
March 1996 1/4

THERMAL DATA

R _{thj-amb} •	Thermal Resistance Junction-Ambient	Max	500	°C/W
R _{thj-SR} •	Thermal Resistance Junction-Substrate	Max	400	°C/W

Mounted on a ceramic substrate area = 0.7 mm x 2.5 cm²

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)


Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
I _{CBO}	Collector Cut-off Current (I _E = 0)	V _{CB} = 10 V			50	nA
I _{CEO}	Collector Cut-off Current (I _E = 0)	V _{CE} = 10 V for BFR92A			50	nA
I _{EBO}	Emitter Cut-off Current (I _E = 0)	V _{EB} = 1 V for BFR92A			10	nA
V _{(BR)CBO} *	Collector-Base Breakdown Voltage (I _E = 0)	I _C = 10 μA	20			V
V _{(BR)CEO*}	Collector-Emitter Breakdown Voltage (I _B = 0)	I _C = 1 mA	15			V
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage (I _C = 0)	I _C = 10 μA	2			V
h _{FE} *	DC Current Gain	I_C = 14 mA V_{CE} = 10 V for BFR92 for BFR92A	25 40			
f⊤	Transition Frequency	$I_{C} = 14 \text{ mA } V_{CE} = 10 \text{ V } f = 500 \text{ MHz}$		5		GHz
СЕВ	Emitter Base Capacitance	I _E = 0 V _{CE} = 10 V f = 1MHz		0.4		pF
Ссв	Collector Base Capacitance	$I_E = 0$ $V_{CB} = 10$ V $f = 1$ MHz for BFR92 for BFR92A		0.5 0.6		pF pF
NF	Noise Figure	I _C = 2 mA V _{CE} = 10 V f = 500 MHz for BFR92 f = 800 MHz for BFR92A		2.4 1.8		dB dB
G _{UM}	Maximum Unilateral Power Gain	I _C = 14 mA V _{CE} = 10 V f = 800 MHz f = 500 MHz for BFR92 f = 800 MHz for BFR92A		18 16		dB dB
d _{IM3}	Intermodulation Distortion a duration = 300 us, duty, cycle <	$\begin{array}{llllllllllllllllllllllllllllllllllll$		-60 -60		dB dB

^{*} Pulsed: Pulse duration = 300 μs, duty cycle ≤ 2 %

SOT-23 MECHANICAL DATA

DIM.	mm			mils		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	0.85		1.1	33.4		43.3
В	0.65		0.95	25.6		37.4
С	1.20		1.4	47.2		55.1
D	2.80		3	110.2		118
Е	0.95		1.05	37.4		41.3
F	1.9		2.05	74.8		80.7
G	2.1		2.5	82.6		98.4
Н	0.38		0.48	14.9		18.8
L	0.3		0.6	11.8		23.6
М	0		0.1	0		3.9
N	0.3		0.65	11.8		25.6
0	0.09		0.17	3.5		6.7

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication superseds and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

 $\hbox{@ }1995\ \text{SGS-THOMSON}\ \text{Microelectronics}$ - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

